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Background

The Air Force, in an effort to wisaly program and more cost-effectively manage resources for long-
term monitoring (LTM), has developed a spatia and tempora optimization agorithm based on datistica
methods. A mgor requirement was that the optimization agorithm should be reasonably smple to
implement, yet effective in identifying tempora and spatia redundancy. The dgorithm aso had to be
sructured in terms of a decison-logic flowchart that would be useful more generdly a additiond Stes
across the Air Force and the Department of Defense. Components of the agorithm are also useful for
monitoring long-term operations of remedid systems that may currently be in place.

Data from two ground-water plumes at the Massachusetts Military Reservation (MMR) on Cape
Cod were used to test and develop the Statistical approaches.  Monitoring networks associated with
the FS-12 and Eastern Briarwood Plumes were analyzed. The database consisted of 173 digtinct well
locations for FS-12 and 363 distinct well locations for Eastern Briarwood. Both of these plumeswere
sampled over aperiod of years. Contaminants andyzed include ethylene dibromide (EDB), benzene,
trichloroethylene (TCE), and tetrachloroethylene (PCE). Other contaminants either rarely or never
exceeded applicable drinking water standards (MCL s) and so were excluded from the analyss. Asis
the case for mogt Air Force ingtalations, amost 90% of the measurements were non-detect.

The key question of interest was. how can LTM networks be optimized so that limited resources
arewisdy and effectively dedicated to fiedld sampling, |aboratory andysis, and/or well congtruction? The
primary objective was to determine to what degree these resources can be pared without significant lose
of key satistical information about the plumes being monitored.

In particular, it was assumed that the god of any LTM effort isto provide an accurate assessment
over time of ground-water quality, with the ultimate objectives of enabling oneto 1) construct an
interpolated map of the current concentration levels across the Site area, and 2) accurately assess trends
or other changesin individual monitoring wells. Interpolated maps are used to assess whether or not a
plume of contaminated ground water exists, and, if o, its extent and characterigtics (e.g., intensty).
Changes in such maps over time can indicate either improvement or decline in ground-water quaity
across the plume area. Changes in concentration patterns or the identification of trends at individua
“senting” wells can dso serve the same purpose.



The optimization dgorithm itsdf was divided into two separate components. 1) tempord
redundancy, and 2) spatia redundancy. Tempora redundancy refers to whether or not certain wells are
being sampled too frequently. Are samples collected so often that there is a Sgnificant degree of
autocorrelation between closely spaced measurements? If so, can this redundancy be reduced or
eliminated by decreasing the frequency of sampling and/or lengthening the time between collection of
samples? Spatid redundancy refers to whether or not too many wells are being monitored. That is, are
there wells that provide essentidly redundant information and could be diminated from the network
without sacrificing resolution of ground-water quality?

At theroot leve, the optimization agorithm presented below conssts of three basic steps. 1)
I dentification of tempora redundancies in currently monitored wells, 2) identification of spatialy
redundant wells, and 3) projection of cost savings gained by diminating wells and/or reducing sampling
frequencies.

Temporal Optimization Algorithm

The tempord agorithm was divided into two non-overlgpping pieces. A) computetion of the
composite tempord variogram, and B) “iteraive thinning” of sampling events a sdected wells.

The firgt gpproach alows time series data from many wels to be combined together into asngle
messure of tempora autocorrelation known as a variogram. As opposed to patia autocorrel ation,
which consders the distance between points in space, tempora autocorreation takes “distance” asthe
€lgpsed time between samples collected from the same location. Using time as the distance function,
one-dimensional variograms can be constructed to measure the average correlation between pairs of
measurements as the time lag between them increases or decreases.

The point in time & which the“slI” (i.e,, upper bound) of this variogram is reached estimates the
goproximate lag time between sampling events for which there is no time-rdated dependency, and
hence, no tempord redundancy. Samples taken from the same location at shorter intervas will tend to
be correlated to some degree and therefore at least partidly redundant in the statistica information they
provide. Because data from multiple well locations are included in the composite tempord variogram,
the variogram approach does not necessarily provide an optima sampling frequency for each individua
well. Rather, it estimates an “average’ optima frequency that can, if desired, be adopted on asite-wide
basis.

To edtimate the average tempora autocorreation, the basic approach of Tuckfield (1994) was
modified to estimate a one-dimensiond variogram using time of sampling as the dimension. Instead of
trying to explicitly model the tempord autocorrelation, the key steps were to 1) compute an empirica
tempora variogram for each well; 2) average the empirica variograms across wells to build a composite
tempord variogram; 3) locate the smdlest time interva a which the gpproximate sl of the composite
variogram was reached; 4) desgnate the time interval found in Step 3 as the minimum sampling interval
providing essentidly uncorrdated tempord data; and 5) adjust the sampling frequencies a the remaining
monitoring wells o thet the time lag between samples will not fal below this minimum interval.



The second approach is designed for key “senting” wells, wells exhibiting trends over time, or other
monitoring locations for which awell-specific sampling frequency may be desirable or needed. Various
methods for optimizing sampling frequencies a individud wells have been proposed (see Johnson, et d,
1996 for ingtance). With this dgorithm, however, a somewhat different gpproach was taken. “Iterative
thinning” refers to the temporary remova of randomly-selected data points from the time series of
measurements at a given well. The dgorithm conssts of 1) estimating atrend using the entire time series,
2) thinning the time series by a fraction of the measurements, and then 3) re-estimating the trend to
determine if the dope esimate is fill dose to the origina dope. Additiona thinning can occur until the
“thinned” trend esimate is Sgnificantly different from the origina trend.

Problemsin the andyss were encountered for asmal subset of the wells which did not exhibit a
readily discernible trend or lacked enough time series data to make a well-specific andyss worthwhile,
Further complicating the matter, at some of these wells the apparent trends were non-linear, or, even
when the trend was fairly linear, in some cases the concentration data were much better behaved (i.e,
exhibited less variation around the trend line) toward the end of the sampling record than the near the

beginning.

For dl these reasons, it is recommended that the iterative thinning gpproach be restricted to sdlected
wells a a given Ste having adequate data and some indication of atrend if possible. Furthermore, to
avoid statistical assumptions inherent in standard linear regression methods, trend estimation was done
with a non-parametric technique known as Sen’s method (Gilbert, 1986). Sen’s procedure can be
gpplied to awide variety of datasets and is readily adapted to non-detect measurements and irregular
sampling frequencies.

Using Sen’s method, only the basic linear dope of the time series was estimated, dong with a
confidence interva around the dope estimate. The premise of the iterative thinning gpproach isthat if
fractions of the data are randomly removed from the time series, yet the same basic dopeis estimated
(within the bounds of the origina confidence interval) on the reduced dataset, temporaly redundant data
exigts and the sampling frequency at that well can be adjusted to further lengthen the time between
sampling events.

Stepsin Temporal Variogram Approach
1) Pre-Processthe Data

Severa steps were necessary to prepare the datasets for optimization including filling data gapsin
the time series data and populating various missing datafields. One cannot overestimate the importance
of database management and the use of a Sandardized eectronic data structure in attempting this kind
of andyss. Indeed, on the order of 80% of the effort involved merely producing a“clean” dataset that
was worthy of applying the statistical methods for the andysis. Data was produced by disparate
sources including severa consulting firms and government agencies. An dectronic data structure
modified from the Air Force s Environmental Resources Program Information Management System
(ERPIMS) was used to create the data warehouse. Inconsstencies in [aboratory qudifiers, various
detection limits, differing analytica methods, non-uniquenessin well identifierswere dl chalengesto
developing a dataset for andyss.



Since the andlytical methods and detection limits varied somewhat from sample to sample and
across the years of data collection, and the vast mgority of the data were non-detect, it was impractical
to fit standard parametric distributional models to the concentration data. Instead the data were
amplified by transforming each reported vaue into an “indicator vaue’ (1V), that is, azero or one
respectively, depending on whether the vaue exceeded a fixed concentration cutoff for the contaminant.

With an indicator transformation, information about extreme concentration levelsislog (other than
knowing the val ue exceeds the cutoff). However, it is often eeser usng indicators to fit the kinds of
geodtatistical covariance models (discussed later) needed to gauge the degree of spatial redundancy and
to determine an gpproximate “silI” for measuring the lowest point of tempora redundancy. Furthermore,
non-detect concentrations need not be known or imputed (at least if the detection/quantitation limit is a
or below the cutoff), Snce any concentration presumably less than the detection/quantitation limit dso
will not exceed the chosen cutoff. It is therefore possible to unambiguoudy classfy a dataset into
indicator values without resorting to complicated imputation schemes or tenuous statistical models.

While the concentration cutoff used to form the indicator vauesis somewhat arbitrary, “naturad”
options would include the highest detection or quantitation limit, an agpplicable MCL or regulatory limit,
or perhaps an dready established background level (e.g., amean or upper confidence limit). At FS-12,
the indicator cutoff was taken asthe MCL.: 5 ppb for benzene and .02 ppb for EDB. At Eastern
Briarwood, the cutoffs for TCE and PCE were sdected equd to their respective detection limits. For
the latter plume, asill was more reedily identified for both contaminants using the detection limit asthe
cutoff instead of the MCL of 5 ppb. In practice, more than one cutoff may need to be examined to
ensure that the least amount of gatistical information is lost when forming either the tempord variogram
or the spatia variograms to be discussed later.

2) Compute Composite Temporal Variogram

Once the data were converted to indicators, a sample estimate of the time-dependency between
sampling events was computed known as the composite tempora variogram. A tempord variogramisa
measure of correation over time between two sampling events (at the same wdl), roughly equd to the
average quared difference in indicator values for dl pairs of measurements separated by a given “lag’
(i.e., defined here as the time between sampling events).

To form the composite tempord variogram, separate variograms were first caculated using the time
series from each individual well. Firgt, a base lag spacing was chosen to represent increasing periods of
time. For example, one set of lags might be taken as 0 months (1% |ag), 2 months (2™ lag), 4 months
(3%1ag), 6 months (4™ lag), and so on, using alag spacing of 2 months. Then, a each distinct well
location, the squared differences between indicators from dl possible pairs of sampling events were
computed and grouped by nearest lag. After averaging the squared differences associated with each
diginct lag, a sample variogram for each well was born. Findly, a composite tempord variogram was
computed by averaging the individua well variograms across wells for each common lag to get atypica
measure of tempord correlation gpplicable to the site asawhole.



One complication encountered in congtructing the composite tempora variogram was that the
historica records a many wells were quite limited, with less than a handful of separate sampling events
at many locations and very tight tempord spacing at others (e.g., al samples collected over atwo-to-
three week period). Because of this, many wells contributed only a smal number of data pairsto the
composite variogram, at perhaps one or two lags. Fortunately, other wells contributed longer data
records, alowing the composite variogram to be “filled out” with additiond time lags.

Since the actua times between sampling event pairs often did not correspond exactly to agiven set
of lags, the same cd culations explained above were made for three different base lag spacings. Then the
variograms from dl three spacings were ama gamated together to get the find composite variogram.
This tends to ensure that the resulting tempord variogram is not biased due to an artifact of choosing
one particular set of lags.

Another point to note is that for nested wells (i.e., wells with multiple screens a different depths but
aong the same bore hole), concentration vaues from different depths were converted to separate
indicator vaues and used independently in forming the tempora variograms. That is, the well datawere
not sratified by depth. One consequence of this smplifying step was that the variation measured by the
tempora variogram could be somewhat overestimated, especidly at the smalest lags. However, the
degree of overestimation should be partidly offset by the use of indicator vaues instead of the actud
concentrations in the variogram computations.

3) Adjust Global Sampling Frequency

With a composite tempord variogram in hand for each contaminant of concern, a non-linear
smoothing technique was gpplied to each graph to determine an gpproximate Sll. The sl representsthe
highest stable numerica level on avariogram. It first occurs at the smdlest lag time where there is no
discernible correlaion between apair of sampling events. That is, if a gl has been reached when
reading avariogram from left to right, any pair of sampling eventsthat are separated by lag times at least
as long as those associated with the Sl should be uncorrelated in a atistical sense.

Given the fact that some information islost by converting the actua concentration data to indicators,
it might be tempting to use the actua concentrations when forming the tempora variogram. However, it
must be remembered that the composite variogram is an average of the tempora variaion from al wells
at the Ste. The same precise tempord pattern is not likely to hold for each and every well. Indeed, the
composite variogram is designed to be a parsmonious way to determine atypica or “average’ globd
sampling frequency that can be gpplied more or lessto al the wells uniformly. As a consequence,
though, one should not expect to see smple, smooth patterns when examining the points on a composite
tempord variogram.

Using the indicator values to form the tempord variograms resulted in substantid variation in the
estimated vaues a neighboring lags. The same variograms computed on the raw concentration data
resulted in even greater variation, so this avenue was not pursued further. What was done, however,
was to apply anon-linear smoothing agorithm to each composite variogram, in order to estimate a
smooth pattern consistent with the data. A variety of non-linear smoothers are available in standard
datistica software packages, including moving window averages, geosatigtica variogram fitters, the
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Levenberg-Marquardt algorithm, etc. In this case, alowess procedure (lowess denoting a localy-
weighted regression) was gpplied to the variograms.

The lowess procedure is akin to amoving window average, but instead of a smple arithmetic
average aweighted regression is performed on the data points included in each moving window. Like dl
moving window agorithms, the resulting smooth depends on the size of the window used, so dternate
window widths must typicaly be tried to properly baance the degree of smoothnessin the fit and how
quickly the fit responds to changes in the data.

The purpose for using any smoother on the composite tempora variogramsisto try and identify an
goproximate sli, and to determine a what gpproximate lag time the sill first occurs. The ability to identify
the sl varied with the respective contaminants. The lowess fit approach showed that concentrations
first leveled off in the gpproximate range of 350-500 days, depending on the the andyte. Some
difficulty in ascertaining a sl was due to the influence of the indicator cutoffs assgned to the various
contaminants. Recdl that indicator cutoffs were either set a detection limitsor at MCL levels. The
cutoffs that were st to the highest detection limits resulted in the more readily discernible sills for those
particular contaminants involved.

Remembering that the sl on atemporal variogram represents the point of lowest correlation
between sampling events (actualy the point of zero corrdation), the smalest lag time associated with the
dll for a given contaminant can be taken as akind of optima sampling interva, optimd in the sense of
indicating the shortest time between samples with zero statistical correation. Any shorter intervd is
associated with some tempora redundancy, since the correlation for such lag timesiis pogtive.
Consequently, the results of this approach suggest that the generd lag time between samples at FS-12
should be at least ayear (gpproximating to the nearest quarter for operational smplicity), while that for
Eastern Briarwood should be at least five quarters or 1.25 years.

The application of the proposed optimized schedule to the current sampling frequencies at Eastern
Briarwood — without removing any of the current monitoring wells— would result in a 36% annua
reduction in the total sampling and analysis budget. Even greater cost reductions are projected for the
FS-12 plume; however, the savings are based on reduction in sampling frequencies as well as remova
of certain currently monitored wells.

Note that this approach does not adjust the sampling frequencies of individua wells. Rather, the
composite tempord variogram offers a*“broad brush” view of tempora autocorrelation on-site and
provides an impartia method to set uniform, optima sampling frequencies based on minimizing the
degree of tempora autocorreation. Of course, selected wells may need to sampled more often for other
reasons (e.g., new well ingallations, hydrogeologic factors, etc.). And there may be some wells with
well-defined trends that can be adjusted/optimized individually using the other gpproaches above.
However, in the test case applied to these particular plumes, if there was difficulty in locating a
discernible trend in the contaminants of concern, the composite tempord variogram holds the promise of
edimating atypica (abeit rough) tempora pattern that can facilitate sampling decisions.

Stepsin Iterative Thinning Approach



1) Establish Basdline Trend

To establish aninitid trend estimate for a given well, the dope was estimated using a non-parametric
technique known as Sen’s method. Sen’s dope estimate involves picking the median of alist of pairwise
dope values, where each possible pair of data vauesis used to caculate a pairwise dope.

To account for sampling and measurement fluctuations/variahility, basic formulas involving the same
list of pairwise dope vaues were used to compute a confidence interva around Sen’ s dope estimate
(Gilbert, 1987). Then, by congtructing a confidence interval around the initid trend, re-estimates of the
trend after “thinning” the data series could be compared to the confidence bounds to determine whether
the dope vaue had changed in asgnificant way.

Asnoted earlier, Sen’s method can be adapted to the presence of non-detects, athough some
choice must be made to impute the non-detect concentration vaues. Perhaps the easiest tack is set dl
non-detects equal to zero for purposes of estimating the trend. Other values might be chosen, such as
haf the detection or quantitation limit. However, if multiple detection/quantitation limits exigt in the deta,
one should be careful not to estimate a positive or negative pairwise dope between two non-detects just
because their detection limits are different. In this study, al non-detects were treated as zeros, so that
any pairwise dope calculated between two non-detects was necessarily zero aswell.

2) “Thin” the Data Series and Assess Accuracy

Once Sen’ s dope estimate and the confidence interva around the trend were in hand, the data
serieswas “thinned.” To do this, acolumn of random numbers between 0 and 1 was generated
aongsde the time-ordered concentration data. Then, in iterative fashion, increasing percentages of the
data were randomly “removed” from each time series. For example, at 20% censoring, from each
successve group of five measurements one was removed, Smply by flagging the lowest random number
from the corresponding column in that group of five. At 33% censoring, one of every three successive
vaues was removed, and so on. FHagging the values in this way ensured that the random removals
would not be “bunched” at one end or the other of the time series; rather, the series was smply “thinned
out” inapractica way.

After thinning each time series, Sen’s dope (but not the confidence interval) was recomputed to see
if it fel within the origind confidence bounds and to make sure the sign of the dope had not changed.
The highest censoring level for which the re-computed dope was still comparable to the origind trend
estimate was then used to adjust the sampling frequency at that well and to determine the degree of
tempora redundancy that existed.

3) Adjust the Wdl-Specific Sampling Frequency

To optimize the sampling frequency a a given wdl, the fraction of data points removed in the
thinning process was congdered. For ingtance, if the highest leve of thinning was 50% before the dope
changed, hdf the data could be removed and yet il provide a comparable dope estimate. In this case,
the optimized sampling interva would essentialy double in length. If only 20% of the datawere
removable, the optimized sampling interval would increase by roughly 25%.
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More fundamentaly, the optimized sampling interva for wells sampled on afairly regular schedule
can be computed as the total Iength time in the sampling record divided by the number of points
remaining after thinning. For wells with irregular sampling higtories, it isimportant to avoid biasing the
sampling frequency by early periods of intense sampling. Consequently, the optimized sampling interval
should be computed by dividing the most recent sampling interva (i.e., the lag between the two most
recent, digtinct sampling dates) by one minus the fraction of data points thinned. This step should avoid
the problem of creating an optimized sampling interva that might actudly be shorter than the current
one based on the most recent monitoring schedule. However, some caution must be used when
performing such a step on an automated basis. Idedlly, the interva from the most current sampling
schedule ought to be utilized before dividing by the complement of the fraction thinned, rather than just
assuming that the last two sampling events adequately define the sampling interva, asin this report.

Results of this pilot sudy a FS-12 and Eastern Briarwood suggest that temporal redundancies did
indeed exig, & least for selected wells with sufficient deta. Data at these wells could be “thinned”
without losing the ahility to estimate the basic trend in concentration levels over time. Theiterdive
thinning approach isfarly easy to implement and does not require more sophisticated non-linear fitting
of the trend function. However, it does presuppose a sufficient number of data values (say at least 8 to
10) with which to perform the random subsetting and to estimate the dope of the trend. The average
fractions thinned varied in the range of 40 to 70 percent. Such thinning percentages can potentidly
trandate into sgnificant cost savingsin reduced sampling a the impacted wells.

Spatial Optimization Algorithm

The spatiad Sde of the optimization dgorithm is predicated on the notion that well locations are
redundant if nearby wells offer nearly the same information about the underlying plume. Specificadly, a
well is consdered redundant if its remova does not Sgnificantly change an interpolated map of the
plume; that is, essentidly the same iso-concentration contours result.

The path taken in identifying potentialy redundant wells included the following steps: 1) generate an
initid plume map viaa geodatigica interpolation method known as kriging; 2) assgn numericd weights
(denoted global kriging weights) to the wel locations in the monitoring network to gauge their rdaive
contribution to the plume map; 3) temporarily remove that subset of wells with the lowest globd kriging
weights and re-estimate the plume map; and 4) assess whether the plume map has changed in any
ggnificant way and gauge via the kriging variance whether the spatia uncertainty has subgtantialy
increased. If nat, try removing some additiond wells and repesating the process. But if Sgnificant changes
are evident, do not remove that subset of well locations.

Key Steps
1) Pre-Processthe Data

Many of the sameinitid steps used to form the composite tempord variogram were taken to
prepare the data for spatia optimization. The data at both plumes were adso converted from
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concentration values into indicators (1V), using the same cutoffs as sdlected for the tempord
optimization.

To keep the gatitica dgorithm as operationdly feasible as possible, only asingle indicator cutoff
(e.g., MCL, detection/quantitation limit, etc.) was used to convert the raw data. One could potentialy
use amultiple indicator approach with multiple cutoffs set at increasing concentration levels. Less detall
about the extreme portions of the plume would be lost. However, the steps needed to geodtatistically
mode the data would be multiplied. Unless detailed information about the plume is needed, the added
complexity will probably not provide much in the way of useful information on patid redundancy over
the approach taken here.

Another smplifying step was gpplied to nested wdlls that were screened across multiple depths.
Since the number of data points at any given depth was fairly limited, the three-dimensiond nature of
each plume was collgpsed into atwo-dimensiona problem by “averaging” indicator vaues over depth
for agiven wel location. “ Averaging” in this context refersto labding the sampling a a particular well on
any given date/event asa“hit” (i.e,, exceeding the indicator cutoff, so that IV = 0) if any one or more of
the samples with depth was a“hit.” Well locations where adl vaues did not exceed the indicator cutoff
were assgned indicator vaues of 1V = 1.

A fina pre-processing step was necessary to accommodate the irregular sampling schedules
observed a the plumes. Some of the wells were sampled more often than others. To avoid giving more
datigticad weight to some well locations than others smply by the volume of deta points avalable at
frequently sampled wells, each dataset was divided arbitrarily into a series of quarterly “snapshots’ or
timedices

For a given three-month time span, awd| with any “hits’ was labeled asa“hit” for that quarter,
regardless of the number of timesit was sampled. This meant that as long as awell was sampled even
once during that quarter, it was given the same relative satistical weight as awell sampled more
frequently. Again, collgpsing the problem in thisway “loses’ or ignores some information about the
tempord pattern of contaminant concentrations. But the gain in smplicity is sgnificant. A rdated
decison was made to limit the number of time dicesincluded in the spatid andyssto thosewith a
relatively large number of wells sampled (typicaly 30 or more).

2) Mode the Spatial Covariance

Once the data were collapsed into a single horizonta plane and grouped by quarter of sample
collection, the indicator data from each quarterly time dice were fit to sandard geostatisticd spatid
covariance models. Thisinvolved two basic steps. First, a sample estimate of the spatia corrdation
function known as the empirica variogram was computed. A variogram is ameasure of correlation with
distance between two sampling locations, roughly equa to the average squared difference in indicator
vauesfor dl pairs of locations separated by agiven “lag” (i.e., distance between locations).

To account for possible changes in the plumes over time, the empirica variogram for each quarterly
dice of datawas examined to seeif that pattern dso changed with time. Because the corrdlation pattern
was farly smilar for the bulk of the quarterly time dices, the differences were not greet enough to

9



necesstate separate variance modeling. Consequently, the quarterly variograms were averaged across
the time dices (weighted by the number of pairs contributed to the variogram estimate in each time dice)
to form asngle, time-averaged variogram.

Another typica step isto compute the empirical variograms with different base lag spacings (e.g.,
separations between successive lags of 100 ft, 300 ft, 1000 ft, etc) to ensure that the choice of lag does
not overly influence the gppearance of the resulting variogram. In this study, the basic pattern was smilar
regardless of the base lag spacing employed. So, the empirical variograms at three different lag spacings
were amagamated to form afind variogram prior to modding.

Once the empirica variogram for each contaminant was estimated, a non-linear fitting program
(utilizing the Levenberg-Marquardt algorithm) was used to determine an gppropriate positive-definite
gpatia covariance model. Four such models are common in the geostatisticd literature: sphericdl,
exponentid, gaussan, and power. Thefitting agorithm was set up to ether fit a combination of up to
three sphericd, exponentid, and/or gaussian components (termed “ nested structures’ in geodtatistical
parlance) or acombination of up to three power model components.

At FS-12, EDB was best fit with essentialy a spherical modd, while the variogram for benzene was
best described by a power mode (with a nearly quadratic power coefficient). At Eastern Briarwood,
TCE was best fit with a power modd (using a nearly quadratic power coefficient), while for PCE, no
standard moddl was entirely adequate. Instead, the variation with distance for PCE fluctuated more or
less around a congtant level, suggesting that a congtant “nugget” variance term be used as the variogram
model. Such amodd implies that there is no correlaion with distance between neighboring well
locations. Lack of spatia correlaion might be related in this setting to the indicator cutoff used for PCE
and/or the “averaging” of the indicators across depths within wells or across sampling events within time
dices. In any event, the results of spatia redundancy andysis at Eastern Briarwood when comparing
TCE and PCE, as discussed below, were surprisingly consistent despite the difference in spatia model
used.

3) KrigetheIndicator Data

To actudly determine which wells might be spatidly redundant, remember that a monitoring well
was conddered redundant if other (nearby) wells provided much the same information concerning the
plume being monitored. More specificaly, awell was redundant if it provided little independent or
additiond informeation when generating amap of the plume.

To generate a plume map, estimates of concentration are needed at unsampled locations, not just
the ingtaled wells. These estimates typicdly involve an interpolation of the known concentrations at
dready existing wells. Mogt often the interpolation is computed as a weighted linear combination of the
sample data from a series of (n) fixed locations.

One way to define patiad redundancy is when one or more wells are assigned very smal weightsin

the interpolation process compared to other wells. For only those wells with larger weights contribute
sgnificantly to the estimation a unsampled locations.

10



While many methods for linear interpolation exi<, the gpproach adopted a MMR is awiddy used
method for linear interpolation over a gatia area known in the geodtatistica literature askriging. Not
only does kriging offer akind of “best” unbiased linear interpolation, but it aone among common
interpolation schemes explicitly accounts for the statistical redundancy at nearby sample locations,
through its estimate (i.e., modd) of the spatial covariance function.

Although there exist a variety of kriging methods, the most common isknown as ordinary kriging
(OK). OK generdly workswell for concentrations or other measurement data that are mostly detected
or quantified. For chemica parameters with low detection rates, however, OK can be difficult to apply
for three reasons. 1) the spatia covariance modd is often hard to model due to the unknown
concentrations of non-detects and the fact that some type of imputation must be made for these
unknown vaues, 2) the linear interpolation at unsampled locations must again rely on combinations of
imputed non-detect vaues, 3) if the detected values are additiondly quite skewed, both the empirical
variograms and kriged estimates can fluctuate in unpredictable and anomaous ways.

Empirica variograms of the raw concentration data (Smply taking non-detects as zeros) were quite
jagged and impossible to fit using the sandard spatia covariance models. Because of this and the
reasons outlined above, an dternative procedure known as indicator kriging (IK) was employed. In
ample 1K, al the sample data are re-classified as ones or zeros depending on whether or not the actua
concentration is below or above afixed threshold (i.e., the indicator cutoff). While detail concerning the
intengity of the plumeislog, thereis aso no need to know the exact concentrations of non-detects.
Furthermore, the adgorithm is exactly the same as OK except that the indicator data are used in place of
the raw concentrations.

Because the data are transformed into indicator vaues, the results of IK interpolation a unsampled
locations do not represent concentration estimates. What they do represent are probabilities of
exceeding or not exceeding the indicator cutoff. That is, assuming for instance that the MCL isthe
cutoff, alow IK estimate denotes alow probability that the true concentration at that estimated
location is below the MCL, while ahigh IK estimate denotes a high probability thet the true
concentration is below the MCL. Low IK values therefore represent probable MCL exceedances,
while high IK values represent the opposite.

The basic IK dgorithm used a MMR was to first divide the plume areainto a series of non-
overlapping blocks. At each block a smple search agorithm was used to locate a set of sampled
locations closest to the block. Then, using the modeled spatia covariance function, local kriging or
interpolation weights were computed based on the spatia configuration of the known indicator vaues
(that is, the data from known surrounding wells) relative to the block and the spatia correlation between
the average block location and each known indicator. These loca weights were then combined with the
known indicator vaues to generate a block indicator estimate (condsting of aweighted average of the
indicators). The block indicator estimates taken as a whole produce an estimated indicator plume map.

4) Compute Global Kriging Weights

Though the indicator plume maps resulting from indicator kriging do not provide explicit
concentration estimates for the plume, two intermediary computations from the kriging exercise are
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extremely useful: 1) theloca kriging weights assigned to sampled locations near each block can be
accumulated and averaged to generate a“ globa” interpolation weight for each well (see Isaaks &
Srivastava, 1989); 2) a each block, the locd kriging estimation variance indicates the relative
uncertainty of thelocal block estimate compared to estimates at other blocks.

Since the search agorithm described above when kriging individua blocks locates known wells
nearest to the block being estimated, some wells, depending on thelr location (and particularly those
toward the middle of the plume), are used in the local estimation of many different blocks. These wells
will potentialy receive adifferent local kriging weight each time they are tagged by the search dgorithm,
since the geometric position of afixed well relative to the block being estimated will change with each
new block. The globd interpolation weights were thus formed by averaging dl of the loca kriging
weights for each given well, in order to estimate the well’s overall contribution to the estimation process.
Note that to assess the average contribution of agiven wel not only across the Site spatiadly, but dso
over time, the loca kriging weights for each time dice were further averaged across the dices.

The globd interpolation weights offer a rdaive ranking of the well locationsin terms of the amount
of independent spatia information provided. Those wellsthat are spatidly redundant will tend to have
the lowest globa weights since their local kriging weights will frequently be smdl. By choosing a
threshold vaue of, for instance, .01 or .02, and diminating dl those wells with globa weights no greater
than the threshold, an impartial decision criterion can be established for removing spatialy redundant
well locations.

When multiple chemica parameters are being monitored, it may be that the most spatialy redundant
well for one parameter is not the most redundant for others. The god is then to remove only those wells
that exhibit spatid redundancy across the monitored parameters. One possible strategy isto compute a
separate set of globd interpolation weights for each parameter and then average these sets across the
parameters. That way, the find ranking for sdecting candidate wdls for remova will account for dl the
parameters of interest.

The drategy used for thisinvestigation was to smply compare the lists of tentetively removed wels
for each parameter and only remove those that gppeared on each list. Remarkably, even though
different spatia covariance models were fit to EDB and benzene for FS-12, the lists of spatialy
redundant wells were very amilar for the two parameters a each of the weight thresholds tested. The
close correspondence offers additiona confidence that the wells targeted as candidates for removal did
indeed provide redundant spatia information.

At Eastern Briarwood six distinct thresholds were tested with TCE and PCE. Again it wasthe case
that despite the use of different spatid covariance models for the two chemicals, the lists of potentialy
redundant wells were very smilar, exhibiting a high degree of overlap. Once again, the wdls ultimately
tagged for potential remova included only those flagged as redundant for both TCE and PCE.

5) Assess Relative Uncertainty

Although the weight thresholds provide an impartia way to identify potentidly spatialy redundant
wells, the thresholds are arbitrary. Ultimately it must be determined whether removing those wells has
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any measurable impact on the estimation of the indicator plume maps. One useful measure that is part of
any standard kriging output is the loca kriging variance, which, in the case of block kriging, is a separate
number associated with each estimated loca block. Aswith any statistical variance estimate, large loca
kriging variances suggest thet the estimated vaue for agiven block is much less precise than estimated
blocks with smdl loca kriging variances.

Since the size of the locd kriging variance for agiven block depends on the spatid covariance
mode, the number and configuration of the sampled locations, and the position of the estimated block
relative to nearby samples (i.e., known well locations), the local kriging variance dso provides a
measure of rdative paia redundancy. In fact, by averaging the local kriging variances across blocks as
suggested by Bertolino, et a (1983), the overdl uncertainty usng one configuration of well locations can
be compared to the uncertainty derived from dternate configurations. This quantity — after further
averaging across dl the time dices— is denoted as the global kriging variance in the proposed
optimization scheme.

In particular, if al welswith globa kriging weights smdler than a particular threshold are diminated
from the mix, and the Siteis re-kriged on the same blocks, the new globd kriging variance can be
checked againgt the origind measure to examine whether or not too much spatia information has been
lost. Used in an iterative fashion, this agorithm alows the set of well locations to be narrowed to those
that are most helpful as Satidtica estimators of ground-water quality. For ingtance, it might be agreed
that a subset of wells can be removed from monitoring as long as the increase in globd kriging variance
isno more than, say, 5% of the origind vaue. While a 5% increase may seem ét firg glance to be less
than consequentia, remember that the loca kriging variances are being averaged across blocks and
acrosstime dices. Any increase in the overal average will necessarily entail anumber of blocks with
ggnificant jJumpsin the locd kriging variance, indicative of aloss of spatid information. So even smdl
increasesin the globd kriging variance are likely to have significance.

Vaues of the globd kriging variance for each weight threshold and its relative change with respect
to theinitid globd kriging variance were determined and andlyzed. Unfortunatdly, despite the smplicity
of the globa kriging variance, it must usualy be supplemented by other uncertainty measures. In
particular, it is quite helpful to compute ratios— on a block-by-block basis— of the local kriging
variance a agiven threshold and theinitia local kriging variance before any well locations have been
removed. By further averaging these ratios across time dices, it is possble to create maps of the time-
averaged locd kriging variance ratios.

Maps of the locd kriging variance ratios indicate what parts of the estimated plume map are
asociated with the largest change in relative uncertainty, after removing a subset of the well locations.
Presumably, by removing a subset of wells from the analyss, the kriging variances will tend to increase
at some of the estimated blocks. Large ratios in particular sectors of the plume will then suggest that a
sgnificant amount of spatia information has been logt in those sectors. This dlows further refining of the
criteriaused to remove wells.

Asafind check of uncertainty, note that the find god of the optimization is to ensure that
reasonably consistent plume maps can be congtructed even after removing a set of spatidly redundant
wells. Any weight threshold or targeted increase in the kriging variance is to some extent arbitrary. One

13



should therefore examine before-and-after indicator plume maps to determine if the basic pattern and
features of the map estimates have been fundamentaly dtered. If S0, it suggedts that too many wells may
have been removed from the mix.

When examining plume maps derived from this andys's, even subtle changes in contour lines
indicate some loss of gpatia information. However, examining such maps takes some practice and can
be more subjective in nature than the checks on the local and globa kriging variances outlined above.

6) Finalize List of Redundant Wells

After determining an appropriate threshold for each contaminant of concern, the lists of potentialy
redundant wells for each plume were compared. As noted earlier, there was a high degree of overlap in
the lists comparing contaminants within each plume.  Ultimately, only those well locations tagged on the
lists of both contaminants at each plume were judged to be spatialy redundant.

On the basis of the spatid andlys's, 38 of 173 ditinct locations were tagged as spatidly redundant
at FS-12. Of these 38, only 21 locations were still being monitored under the current regime as of Fal
1999. At Eastern Briarwood, 71 of 363 well locations were tagged as spatialy redundant. None of
these 71 are ill being monitored according to information supplied by the latest contractor.

Despite the fact that many of the redundant well locations are no longer being regularly sampled,
removing those that il exist and applying the recommended globa sampling frequency (from the
composite tempord variograms in Section 2) leads to significant potential cost reductions at FS-12 and
Eagtern Briarwood. The sampling and analysis budget at FS-12 could potentially be reduced by 42%
from the current expenditure for a savings of approximatdy $165,000 per year. At Eastern Briarwood,
the potentid reduction is 36% for an annua savings of around $76,000.

It must be noted that the lists of spatidly redundant wells were proposed for removal strictly on the
basis of the above datistical analyss. Before such arecommendetion is implemented, the specific well
locations would need to be examined by hydrogeologists familiar with the sites and by the gppropriate
regulators to ensure that vauable information other than the concentration data used here would not be
logt. Other than achange in cost estimates, the optimization agorithm would in no way be harmed or
atered if someone decides for other reasons that one or more wells tagged as redundant should be kept
on the monitoring list and not removed.

Final Considerations

The benefits of optimization and any cost savings redlized are strongly dependent on the quality and
currency of the input data. As plumes change over time and historica data becomes regarded as
unrepresentative of current conditions, it is highly recommended that an ongoing review be conducted,
say, every three to five years after the initid implementation. At these intervas, the optimization
agorithm should be re-conducted using more recent sampling information, in order to determine
whether the globa sampling frequency or the frequencies at individua wells need adjusment, and to
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determine whether or not additiond wells show significant spatid redundancies. It aso might happen
that new wells may need to be placed into the monitoring network.

To improve the success of ongoing reviews, operationd adjustments to the sampling schedule
should be entertained. By way of example, suppose the initid analyss suggests agloba sampling
interva of one year, S0 that each digtinct well isto be sampled once per annum. Rather than sampling dl
wells a the same time every year, a better strategy would be to divide the wells into four non-
overlapping subsets and sample one-quarter of the wells (i.e., one subset) each quarter. Such a scheme
will tend to minimize biases or artifacts cregping into the data due to seasond fluctuations, for instance.

In addition, so that enough pairs of measurements at different time lags are available to reconstruct a
composite tempora variogram at the next program review, it is recommended that a random rotation be
used to determine which subset of wells gets sampled during a given quarterly sampling event. In other
words, if subset #1 was sampled during the third quarter of the first year after implementing the
optimization scheme, it might be sampled during the first quarter of the following year, and perhgpsthe
fourth quarter of the year after that. The intervals between consecutive samplings of the same well will
then not dways be afull year (Sometimes less, sometimes more), but the sampling frequency will sill be

yearly.

By dlowing for partidly randomly-determined sampling intervals, data pairs can be formed at a
variety of different lag times, thus enabling re-examination of the tempora variogram and whether or not
the optima sampling interva has changed. Otherwise, if a given well was sampled a precisdly the same
time from year to year, only pairs with aone-year lag time or greater could be formed.

On the spatia sSde of the dgorithm, one way to determine whether new wells should be added to
the network is to examine maps of the locd kriging variances. Specific areas of the Ste with very high
kriging variances represent parts of the plume where concentration estimates are likely to be rather
uncertain. Often the placement of one or two wells in such areas will dramaticaly reduce the loca
kriging variances and improve the reliability of interpolated concentration maps made of the plume.
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